If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+114t=0
a = -16; b = 114; c = 0;
Δ = b2-4ac
Δ = 1142-4·(-16)·0
Δ = 12996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12996}=114$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(114)-114}{2*-16}=\frac{-228}{-32} =7+1/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(114)+114}{2*-16}=\frac{0}{-32} =0 $
| (3p+15)+(4p-8)=(4p+24) | | 3=p7 | | 2x+5-4x+11=-2x-6+8x | | .5x-2=2x+415 | | 9*27x=27 | | 7.4x+4.1(2x−4)=−2.3(x−6)−2 | | x/6-5=27 | | 2x+18=7x | | 5x-13+2x-6=x(x+2)-(x+3)x | | 3=s-9 | | -4/5=1/3(4y+2) | | 3/4(x+3)=1/2 | | -x+3+2=23 | | (2÷3)(w-5)=(3÷4)(w+2) | | (+3x−4)/3=5x+7 | | -7(n-4)-4n=105 | | 2(n+5.7)=7.6 | | 4n–3=2n+6 | | 78=y^2+5y | | (a-3)/5=-6 | | 180=(2x+10)+(x+5) | | .25(n+2)=2.5 | | 360=x+x-20 | | 5x-2=+9 | | 5g+1=2g+7 | | 88=2x+12 | | 2x+2x+30+x=360 | | 90=x+(0.4x | | -6(1-8k)=330 | | -8(x−7)=8+2(4−8x) | | 90=x+(x0.4) | | Y+t=3 |